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Please send any questions/comments/corrections to hhao@berkeley.edu.

0 Fundamental Theorem of Calculus

1. FTC I: If f is a continuous function and a is any constant, consider the function
F (x) =

∫ x

a
f(t)dt, which, given x, computes the integral of f from a to x. Then

F ′(x) = f(x).

� Example: if F (x) =
∫ x2

2
cos(t)dt, then F ′(x) = 2x cos(x2) (don’t forget the chain

rule!)

2. FTC II: If f is a continuous function and F is an antiderivative of f , then
∫ b

a
f(x)dx =

F (b)− F (a).

The average value of a function f over the interval [a, b] is defined as 1
b−a

∫ b

a
f(x)dx.

1 Integration Techniques

1.1 u-substitution

u-substitution is “backwards chain rule”. The chain rule is d
dx
f(g(x)) = f ′(g(x)) · g′(x), so∫

f ′(g(x)) · g′(x)dx = f(g(x)). So, the idea of u-substitution is as follows: whenever we
have some complicated expression we need to integrate involving a composition of functions
r(s(x)), we want to see if we can substitute u for s(x) to simplify the expression (hopefully we
can then integrate r(u) easily). To do this, we also need a copy of s′(x) inside the integrand
in order to carry out the u-substitution procedure.

Example 1.1. We will evaluate
∫

e
√
x

√
x
dx. We notice that the numerator has the complicated-

looking expression e
√
x, which is a composition of the square root and exponential functions.

So we want to substitute u =
√
x. Notice that d

dx

√
x = 1

2
√
x
, which looks like part of our

integrand e
√
x

√
x

. In more detail, since du = 1
2
√
x
dx, so 2du = 1√

x
dx, we have∫

e
√
x

√
x
dx =

∫
eu(2du) = 2eu = 2e

√
x.

Don’t forget that when you perform definite integration and u-substitute u = f(x), the

bounds of integration
∫ b

a
change to

∫ f(b)

f(a)
.
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1.2 Integration by Parts

Integration by parts is “backwards product rule”. The product rule is (uv)′ = uv′ + u′v, so
upon integrating both sides, we get uv =

∫
uv′ +

∫
u′v, or

∫
uv′ = uv −

∫
u′v. Therefore,

whenever we see a product of functions f(x)g(x), we should try an integration by parts.
Recall the LIATE heuristic:

� L–logarithmic functions (e.g. ln(x+ 1))

� I–inverse trigonometric functions (e.g. arctan(x), arccos(2x))

� A–algebraic functions (e.g. polynomials and power functions, like 2
√
x+ 3x−3/2 + 4x2)

� T–trigonometric functions (e.g. sin(x))

� E–exponential functions (e.g. e2x)

A good rule of thumb when choosing u and dv in integration by parts is to choose u to be
a function higher up on this list, and dv to be a function farther down. This is because it is
much easier to find the antiderivative of A, T , and E functions.

Often times, an integration by parts is used after a u-substitution to make the integrand
more tractable.

Example 1.2. We will evaluate
∫ cos(1/x)

x3 dx. We first notice the complicated-looking expres-
sion cos(1/x); via a substitution t = 1

x
(so dt = − 1

x2dx), the integral becomes −
∫
t cos(t)dt.

This is a product of two elementary functions, so we integrate by parts. Using the LIATE
mnemonic. we should choose u = t and dv = cos(t), so that du = 1 and v = sin(t). So the
integral is∫

cos(1/x)

x3
dx = −

∫
t cos(t)dt = −

(
t sin(t)−

∫
sin(t)dt

)
= −t sin(t)−cos(t) = −sin(1/x)

x
−cos(1/x).

A common trick is “integration by parts with 1”; that is, when integrating a function f(x)
with no immediate antiderivative, we apply integration by parts to 1 · f(x) with u = f(x)
and v = 1.

Example 1.3. We will evaluate
∫

arctan(x)dx. We do not know the antiderivative of arctan,
and there are no compositions or products of functions in the integrand, so we introduce
a product, since we do know the derivative of arctan. With arctan(x) = 1 · arctan(x) and
u = arctan(x), dv = 1, du = 1

1+x2 , v = x, we get∫
arctan(x)dx = x arctan(x)−

∫
x

1 + x2
dx = x arctan(x)− 1

2
ln(1 + x2),

where the final integral is done with a u-substitution u = 1 + x2.
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There is another common technique of doing integration by parts multiple times until we
get an algebraic relation between the original integral and whatever we get from integration
by parts. This techniques works well with functions whose derivatives repeat periodically,
like ex or sin(x).

Example 1.4. We will evaluate I =
∫
ex sin(x)dx. One integration by parts with u = sin(x),

dv = ex gives

I = ex sin(x)−
∫
ex cos(x)dx.

Another integration by parts with u = cos(x), dv = ex gives

ex sin(x)−
∫
ex cos(x) = ex sin(x)−

(
ex cos(x)−

∫
ex(− sin(x))dx

)
= ex sin(x)−ex cos(x)−I.

So I = ex sin(x)− ex cos(x)− I, meaning that our original integral I is ex sin(x)−ex cos(x)
2

.

1.3 Trigonometric Integrals

The key to trig integrals is using trig identities to make the right substitution. We start with
the basic identities sin2(x) + cos2(x) = 1, tan2(x) + 1 = sec2(x). We repeatedly apply these
identities until a u-substitution or simplification is possible.

Example 1.5. Here is a basic example:∫
sin5(x) cos3(x)dx =

∫
sin5(x) cos2(x) cos(x)dx =

∫
sin5(x)(1−sin2(x)) cos(x)dx =

∫
u5(1−u2)du

where we substitute u = sin(x). The last integral is easily evaluated. Notice that we “leave
out a copy of cosine” for the u-substitution to work.

For these types of problems, you should also know double-angle and half-angle identities
for sine and cosine.

When we perform trig substitution, there are three main types of substitutions to make,
depending on the type of term appearing in the integrand. Below, assume a > 0:

� The term looks like
√
a− x2. In this case, thinking about 1 − sin2(x) = cos2(x), we

should try x =
√
a sin(θ) (or x =

√
a cos(θ), depending on the other terms present in

the integrand), so that
√
a− x2 =

√
a− a sin2(θ) =

√
a
√

1− sin2(θ) =
√
a cos(θ), and

this is now hopefully easier to integrate after the substitution.

� The term looks like
√
x2 − a. In this case, thinking about sec2(x) − 1 = tan2(x),

we should try x =
√
a sec(θ), so that

√
x2 − a =

√
a sec2(θ)− a =

√
a tan(θ), which

should be easier to integrate.
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� The term looks like
√
x2 + a. In this case, thinking about tan2(x) + 1 = sec2(x),

we should try x =
√
a tan(θ), so that

√
x2 − a =

√
a tan2(θ) + a =

√
a sec(θ), which

should be easier to integrate.

Integrals that are good to remember:∫
tan(x)dx = − ln|cos(x)|,

∫
sec(x)dx = ln|sec(x)+tan(x)|,

∫
1

x2 + a
dx =

1√
a

arctan

(
x√
a

)
.

For the last integral, we need to assume that a > 0. To see why the formula holds, substitute
x =
√
au (work this out for yourself!).

Example 1.6. We will evaluate
∫

1
(x2+4)3/2

dx. We see that we have a term of the form
√
x2 + 4 (albeit cubed, but it doesn’t matter), so we should make the substitution x =√
4 tan(θ) = 2 tan(θ). So dx = 2 sec2(θ)dθ, and∫

1

(x2 + 4)3/2
dx =

∫
1

(2 sec(θ))3
(2 sec2(θ)dθ) =

1

4

∫
1

sec(θ)
dθ =

1

4
cos(θ)dθ =

1

4
sin(arctan(x/2)).

1.4 Partial Fractions

The philosophy of partial fractions is that there are certain functions we should know how
to integrate. These include:

1. Polynomials.

2. Functions of the form 1
x+a

, with antiderivative ln|x+ a|.

3. Functions of the form 1
x2+ax+b

(see below).

4. Functions of the form x
x2+ax+b

. Writing this as x+a/2
x2+ax+b

− a/2
x2+ax+b

, we find that the

integral of the first term is 1
2

ln|x2 + ax + b|, and the second term we know how to
integrate by item (3).

Hence, for any rational function p(x)
q(x)

where p and q are polynomials, if we can express it as a

combination of functions of the above forms, we will be able to integrate p(x)
q(x)

. The method
is as follows:

� Perform long division with p divided by q. Then we can write p(x)
q(x)

as a(x)+ b(x)
q(x)

, where
a is a polynomial and b is the remainder when p is divided by q. So the degree of b is
less than the degree of q.
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� q(x) can always be factored as the product c1(x)a1c2(x)a2 . . . cr(x)ard1(x)b1d2(x)b2 . . . ds(x)bs ,
where the polynomials ci are all linear, and the polynomials di are irreducible quadratics
(meaning that they cannot be factored further).

� We then find the partial fraction decomposition of b(x)
q(x)

. Since ci is linear and appears
ai times in the factorization, the partial fraction decomposition includes one term of
the form Ai

ci(x)k
for each k between 1 and ai. Since di is quadratic and appears bi times

in the factorization, the partial fraction decomposition includes one term of the form
Bix+Ci

di(x)k
for each k between 1 and bi. The goal is to solve for the coefficients Ai, Bi, Ci.

� By above, we can integrate a(x), each Ai

ci(x)k
, and each Bix+Ci

di(x)k
. So we can integrate p(x)

q(x)
.

Example 1.7. Let’s find the partial fraction decomposition of x3

(x2−1)(x2+1)2
. We notice that

the degree of the numerator (3) is already less than the degree of the denominator (6), so
the long divison step is skipped. The denominator is not yet completely factorized: x2 − 1
factors as (x − 1)(x + 1), so the denominator has linear polynomials x − 1 and x + 1 each
appearing once, and the irreducible quadratic x2 + 1 appearing twice. Therefore the partial
fraction decomposition looks like

x3

(x− 1)(x+ 1)(x2 + 1)2
=

A

x− 1
+

B

x+ 1
+
Cx+D

x2 + 1
+

Ex+ F

(x2 + 1)2
.

Multiplying both sides by x−1 and plugging in x = 1, we get A = 13

(1+1)(12+1)2
= 1

8
. Similarly,

if we multiply both sides by x+1 and plug in x = −1, we get B = (−1)3
(−1−1)((−1)2+1)2

= 1
8
. Now,

if we multiply both sides by (x− 1)(x+ 1)(x2 + 1)2 and use our previously obtained values
for A and B, we get

x3 =
1

8
(x+1)(x2+1)2+

1

8
(x−1)(x2+1)2+(Cx+D)(x−1)(x+1)(x2+1)+(Ex+F )(x−1)(x+1).

If we expand the right-hand side and equate coefficients (i.e. the coefficient of x5, x4, x2, x,
and x0 = 1 have to be 0, while the coefficient of x3 is 1), we get C = −1

4
, D = 0, E = 1

2
,

F = 0. So the partial fraction decomposition is

x3

(x− 1)(x+ 1)(x2 + 1)2
=

1/8

x− 1
+

1/8

x+ 1
− x/4

x2 + 1
+

x/2

(x2 + 1)2
.

This is in general how a partial fraction decomposition is calculated. For unrepeated linear
factors like x− 1 and x+ 1 in the above Example, you can perform the “cover-up method”.
For any repeated factors, your only option is to expand both sides into polynomials and
equate coefficients.
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Remark 1.8. Notice that the number of coefficients you solve for should be equal to the
degree of the denominator! For instance, in Example 2.7, the denominator (x−1)(x+1)(x2+
1)2 has degree 6, and we are solving for 6 coefficients A through F . So if the number of
coefficients does not equal the degree of the denominator, something has gone wrong.

Finally, we need to show how to integrate 1
x2+ax+b

to complete the “partial fraction
heuristic”.

Example 1.9. We will evaluate
∫

1
x2+ax+b

dx. The idea is to “complete the square” in the
denominator to get rid of the ax term. Using the substitution u− a/2 = x (so du = dx), we
have∫

1

x2 + ax+ b
dx =

∫
1

(u− a/2)2 + a(u− a/2) + b
du =

∫
1

u2 − au+ a2/4 + au− a2/2 + b
du

=

∫
1

u2 + (−a2/4− a2/2 + b)
du.

The last integral can be evaluated directly. In particular, let c = −a2/4 − a2/2 + b for
ease of notation. If c ≤ 0, then the denominator factors as a difference of squares, and

1
u2+c

= 1
(u+
√
−c)(u−

√
−c) (note that

√
−c makes sense because −c ≥ 0!), and this can be

evaluated using partial fractions. If c > 0, then
∫

1
u2+c

du = 1√
c

arctan (u/
√
c) (see Section

2.3).
More concretely, suppose we wish to integrate 1

x2+2x+4
. Using the above method, we

substitute u− 1 = x and get∫
1

x2 + 2x+ 4
dx =

∫
1

(u− 1)2 + 2(u− 1) + 4
du =

∫
1

u2 + 3
du

=
1√
3

arctan

(
u√
3

)
=

1√
3

arctan

(
x+ 1√

3

)
.
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2 Applications of Integration

I don’t have to say much about these sections. Just make sure you know the formulas.

2.1 Numerical Integration

Memorize the midpoint rule, trapezoid rule, and Simpson’s rule, along with the corresponding
error bounds. I won’t rewrite them here, since they’re in your book. Remember that for
Simpson’s rule to apply, n must be even!

A word about error bounding: in general, bounding functions is hard. But for most of
the functions you will be given, there will be a simple analysis that tells you what an upper
bound should be.

Example 2.1. Let’s see how large n needs to be such that the trapezoid rule approximation
for
∫ 2

1
ln(x)dx is within 1/1200 of the actual value. We know that this error En satisfies

|En| ≤
K(2− 1)3

12n2
=

K

12n2
,

where K is an upper bound for
∣∣∣ d2

dx2 ln(x)
∣∣∣ =

∣∣− 1
x2

∣∣ = 1
x2 on the interval [1, 2] (this means

that K ≥ 1
x2 for all x between 1 and 2). But we know that 1

x2 is a decreasing function when
x is positive (when x is positive and increases, x2 increases, so its reciprocal decreases). This
implies that 1

x2 on the interval [1, 2] can be bounded by the value of the function at x = 1:
1
12

= 1, and we may therefore take K = 1.
So as long as 1

12n2 ≤ 1
1200

, we know that |En| will be less than 1
1200

, as desired. Solving
the inequality, we see that any n ≥ 10 works, so the minimum possible n is 10.

2.2 Arc Length

Simply know that the length of the graph of a function y = f(x) from x = a to x = b is∫ b

a

√
1 + (f ′(x))2dx. Conversely, if the function is given with x in terms of y; i.e. x = g(y),

the length of the graph from y = a to y = b is
∫ b

a

√
1 + (g′(y))2dy.

2.3 Center of Mass

Again, just memorize the formulas; it’s not necessary to know where they come from. Re-
member that the formulas are usually expressed in terms of y = f(x); i.e. x as the indepen-
dent and y as the dependent variable. But if the variables “swap roles”, so we instead have
x = g(y), the formulas for the coordinates (x, y) of the center of mass/centroid also swap
accordingly.
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3 Infinite Stuff (Improper Integrals and Sequences)

3.1 Improper Integrals

To analyze improper integrals, you will need to know the comparison principle, as well as
some basic convergent/divergent integrals. Here are some important reminders:

� Convergence and divergence only depends on behavior “near the asymptotes”. In par-
ticular, if f is continuous on [a,∞), and b ≥ a, then

∫∞
a
·f(x)dx and

∫∞
b
·f(x)dx have

the same convergence/divergence behavior. This is because
∫∞
a
·f(x)dx =

∫ b

a
·f(x)dx+∫∞

b
·f(x)dx, and

∫ b

a
·f(x)dx is just some finite number.

� Convergence and divergence also does not depend on any nonzero constants that are
introduced. This means that if c 6= 0 is a constant, then

∫∞
1
c · f(x)dx has the same

convergence/divergence behavior as
∫∞
1
·f(x)dx

� For double-sided improper integrals of the form
∫∞
−∞ f(x)dx, never “plug in infinity

and minus infinity”; this is meaningless and is very likely to give you nonsensical (i.e.

wrong) results. Instead, write the integral as
∫ 0

−∞ f(x)dx +
∫∞
0
f(x)dx (assuming f

has no other asymptotes) and analyze the two pieces separately:
∫∞
−∞ f(x)dx converges

means that both
∫ 0

−∞ f(x)dx and
∫∞
0
f(x)dx converge.

� Similarly, if we have an improper integral of the form
∫ b

a
f(x)dx where f has an asymp-

tote at some c between a and b, we should split the integral up as
∫ b

c
f(x)dx+

∫ c

a
f(x)dx

and analyze the two parts separately.

Proposition 3.1 (Comparison Principle). Suppose f and g are functions such that 0 ≤
f(x) ≤ g(x) for all x ≥ a, where a is some constant. Then if

∫∞
a
g(x) converges, so does∫∞

a
f(x)dx. If

∫∞
a
f(x)dx diverges, then so does

∫∞
a
g(x)dx.

It is important to note that f and g must be nonnegative! To see why this is necessary,
consider f(x) = −x and g(x) = 0. Then f(x) ≤ g(x) for all x ≥ 0, and

∫∞
0
g(x)dx converges

and equals 0, but clearly
∫∞
0
f(x)dx diverges.

The question remains as to how to find the proper comparison to decide convergence/divergence
of an improper integral. Here are essentially all the facts you need to know:

Fact 3.2.
∫∞
1

1
xpdx converges exactly when p > 1, and diverges otherwise.

∫ 1

0
1
xpdx converges

exactly when p < 1, and diverges otherwise.
Sometimes it is useful to use a more general result:

∫∞
2
xa(lnx)bdx converges if a < −1,

or if a = −1 and b < −1. It diverges in all other cases. We start the integral at the lower
bound 2 (instead of 1) so the integrand has no other asymptotes.
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Fact 3.3 (The “hierarchy of functions”). There is a general hierarchy of functions in relation
to their growths at infinity. For continuous functions on [1,∞), it goes:

1. Bounded functions (e.g. constants, sin(x), e−x on [1,∞)) grow the slowest.

2. Logarithmic functions (e.g. ln(x), ln(3x4 + 2x2)) tend to∞, unlike bounded functions.

3. Power functions of the form xa = ea lnx for any a > 0 grow faster than any logarithmic
function.

4. Exponential functions (e.g. ex, or in general any ef(x) where f is a power function)
grow faster than any power function.

Each class of functions grows so much faster than classes of functions lower on this
hierarchy. As an example:

Example 3.4. We will determine the behavior of∫ ∞
1

x3 ln(x)

(x5 + 1)(sin2(x2 + cos(2x+ 4)) + 2)
dx.

Notice that sin2 of anything is always between 0 and 1, so the sin2(x2 + cos(2x + 4)) + 2 is
between 2 and 3. Also, x5 + 1 > x5 for any x ≥ 1, so we can make the comparison∫ ∞

1

x3 ln(x)

(x5 + 1)(sin2(x2 + cos(2x+ 4)) + 2)
dx ≤

∫ ∞
1

x3 ln(x)

(x5)(2)
dx =

1

2

∫ ∞
1

ln(x)

x2
dx.

Therefore by comparison, if
∫∞
1

ln(x)
x2 dx converges, then so does our original integral. But the

hierarchy of functions tells us that ln(x) grows slower than xa for any a > 0. So in the long
run, we have ln(x) < x1/2, and we can write (using the � notation to make it precise, but
it doesn’t matter what this means for Math 1B purposes):∫ ∞

1

ln(x)

x2
dx�

∫ ∞
1

x1/2

x2
dx =

∫ ∞
1

1

x3/2
dx.

As 3/2 > 1, this last integral converges (see Fact 4.2), so our original integral converges as
well.

Personally, I like to make various substitutions to get the bounds of integration from a to
∞, because the hierarchy of functions only applies for the behavior of functions at infinity
(do not try to apply it for function behavior on [0, 1] or any other interval!) Here is an
example of what I mean:
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Example 3.5. We will determine the behavior of∫ 2

1

1

(x− 1)5/2e1/(x−1)
dx.

Now, we do not have any facts about integrating over this non-standard interval [1, 2]. But
via some u-substitutions, we can transform this to something we are more familiar with.
With u = x− 1, we have∫ 2

1

1

(x− 1)5/2e1/(x−1)
dx =

∫ 1

0

1

u5/2e1/u
du.

Now set v = 1
u
, so du = − 1

v2
dv, and we get∫ 1

0

1

u5/2e1/u
du =

∫ 1

∞
− 1

(1/v)5/2evv2
dv =

∫ ∞
1

v1/2

ev
dv.

Then by the hierarchy of functions, because the exponential function ev grows so much
faster than the power function v1/2, this final integral converges (essentially since

∫∞
1

1
ev
dv

converges). So the original integral converges as well.

3.2 Sequences

You should know the rigorous definition of the limit of a sequence:

Definition 3.6. A sequence {an} converges to a limit L if, for every ε > 0, there is a positive
integer N such that whenever n ≥ N , then |an − L| < ε.

To determine convergence or divergence of sequences, the same principles that we used
in the analysis of improper integrals apply. These include the hierarchy of functions and the
comparison principle.

Example 3.7. The sequence an = n100000000000

en
converges to 0 as n → ∞. Indeed, by the

hierarchy of functions, en grows much faster in the long run than any power function, so the
limit is 0.

We also have the squeeze rule:

Proposition 3.8. Suppose we have sequences {an}, {bn}, and {cn} such that an ≤ bn ≤ cn
for all n. If limn→∞ an and limn→∞ cn both converge to the same limit L, then limn→∞ bn = L.
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Example 3.9. The sequence an = sin(n)
n2 converges to 0 as n → ∞. We can see this in 2

ways. One is by the hierarchy of functions, using that sin(n) is bounded and n2 grows to
infinity. We can also use the squeeze rule, which is logically the same: since −1 ≤ sin(n) ≤ 1
for all n, we know that

− 1

n2
≤ an =

sin(n)

n2
≤ 1

n2
,

and since both − 1
n2 and 1

n2 converge to 0 as n→∞, the squeeze rule says that limn→∞ an = 0
as well.

The monotone convergence theorem is useful for determining that the limit of a sequence
exists, but not what the limit actually is.

Proposition 3.10. Suppose {an} is a sequence that monotonically increases. Then if {an}
is bounded above by some integer M , by which we mean an ≤ M for all n, then {an}
converges. Note that we do not claim that the limit is M .

Similarly, if {an} monotonically decreases and is bounded below, then it converges as
well.

Finally, we may be in a situation where the sequence is defined recursively ; i.e. where
each term an is defined via previous terms an−1, an−2, etc. (and the initial term a1 should
be given to you). The limits of such sequences can be found with the following fact:

Proposition 3.11. If an converges, then limn→∞ an = limn→∞ an+1.

This can be proved by going back to Definition 4.6. Intuitively, the idea is that if an is
“arbitrarily close to L in the long run”, then so will an+1 (since {an+1} is just a re-indexing
of the sequence {an}—the same numbers in the same order but labeled differently).

Example 3.12. Consider the sequence {an} given by a1 = 3, an+1 =
√

2an + 8. We will
show that {an} converges and find the corresponding limit.

The strategy for this problem is a bit of “backwards reasoning”. Let’s first assume that
{an} converges. Then we can apply Proposition 4.11: writing L for limn→∞ an, we have

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

√
2an + 8 =

√
2
(

lim
n→∞

an

)
+ 8 =

√
2L+ 8.

So L2 = 2L+8, and solving the quadratic, we get L = −2 or L = 4. But −2 is an extraneous
solution (since

√
2(−2) + 8 is 2, not −2), so L = 4 is the only possibility. Therefore if we

show that {an} converges, then the limit must be 4.
To show that {an} converges, we will use the monotone convergence theorem, so we want

to show that {an} is increasing and bounded above. Notice that all of the an are positive,
because a0 = 3 is positive, and if x is positive then so is

√
2x+ 8. Now, notice that if
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1 ≤ x ≤ 4, then 10 ≤ 2x + 8 ≤ 16, so
√

10 ≤
√

2x+ 8 ≤ 4. The upshot is that since
a0 = 3 is between 1 and 4, then a1 =

√
2a0 + 8 is between 1 and 4 (since

√
10 > 1), so that

a2 =
√

2a1 + 8 is between 1 and 4, and so on. Using this logic, it follows that all of the an
are between 1 and 4 (this is an example of mathematical induction). In particular the {an}
are bounded, which is half of what we want.

It remains to show that {an} is increasing, so we need to show that an ≤ an+1 =
√

2an + 8.
Both sides are positive, so we can square both sides and show that a2n ≤ 2an + 8, or that
an − 2an − 8 ≤ 0. Since the left side factors as (an − 4)(an + 2), and above we saw that the
an are all between 1 and 4, (an − 4)(an + 2) is the product of something nonpositive and
something positive, implying that an − 2an − 8 = (an − 4)(an + 2) ≤ 0. So we get that
an ≤ an+1.

The conclusion is that the an are increasing and bounded above, so the sequence {an}
converges. But remember that we showed that if {an} converges, then its limit is 4!

Warning: be careful about the assumptions that you make involving limits. For instance,
the method shown in the above Example 4.12 only works if you already know, or if you show,
that {an} converges. Otherwise you will get nonsensical answers. As an example of such an
absurdity, suppose a1 = 1 and an+1 = −an. Then by a bogus application of Proposition
4.11, we get

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

(−an) = −L,

so we “conclude” that L = 0. But the sequence {an} is {1,−1, 1,−1, . . .}, which obviously
doesn’t converge.

Similarly, it is incorrect to use the equation

lim
n→∞

an + lim
n→∞

bn = lim
n→∞

(an + bn)

if you don’t know that {an} and {bn} actually converge! As an example, consider the
sequences an = n+ 1, bn = −n. Then

lim
n→∞

(an + bn) = lim
n→∞

(n+ 1− n) = lim
n→∞

1 = 1,

but limn→∞ an =∞ and limn→∞ bn = −∞. Then the “equation” limn→∞ an + limn→∞ bn =
limn→∞(an + bn) becomes the nonsensical thing ∞−∞ = 1.

Therefore, the correct thing to do is to first show that sequences you are dealing with
converge, and only then apply various limit laws to find the limit.
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